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Major goal:

solve string theory inAdS5 × S5

use conformal invariance,

global (super)symmetry and integrability

find S-matrix and justify Bethe Ansatz for the spectrum

from first principles



String Theory inAdS5 × S5

bosonic cosetSO(2,4)
SO(1,4) ×

SO(6)
SO(5)

generalized to GS string: supercosetPSU(2,2|4)
SO(1,4)×SO(5)

(Metsaev, AT 98)

S = T

∫
d2σ

[
Gmn(x)∂x

m∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x+ ...
]
,

tensionT = R2

2πα′ =
√
λ

2π

Conformal invariance: βmn = Rmn − (F5)
2
mn = 0

Classical integrability of cosetσ-model (Luscher,Pohlmeyer 76)

same for classicalAdS5 × S5 superstringq

(Bena, Polchinski, Roiban 02)

extends to quantum level: 1- and 2-loop computations and their

comparison to Bethe ansatz (work of last 5 years)



Green-Schwarz superstring

Superstring in curved type II supergravity background∫
d2σ GMN (Z)∂ZM∂ZN + ... , ZM = (xm, θIα)

m = 0, 1, ...9, α = 1, 2..., 16, I = 1, 2

Explicit form of action is generally hard to find

AdS5×S5 : coset space symmetry facilitates explicit construction

Algebraic construction of uniqueκ-invariant action as in flat space

R1,9 = G
H = Poincare

Lorentz

Flat superspace =ĜH= SuperPoincare
Lorentz

structure of action is fixed by superPoincare algebra(P,M,Q)

[P,M] ∼ P, [M,M] ∼ M, [M,Q] ∼ Q, {Q,Q} ∼ P
g−1dg = JmPm + JIαQα

I + JmnMmn

Supercoset action=
∫

Tr(g−1dg)2G/H + fermionic WZ-term

I =
∫
d2σ(JmJm + aJ̄IJI) + b

∫
Jm ∧ J̄IΓmJJsIJ

sIJ = (1,−1)



Jm = dxm − iθ̄IΓmθI , JIα = dθIα
manifest superPoincare symmetry but

unitarity and right fermionic spectrum iffa = 0, b = ±1:

κ-invariance→ Green-Schwarz action:

L = − 1
2 (∂ax

m − iθ̄IΓm∂aθ
I)2

+ iǫabsIJ θ̄
IΓm∂aθ

J(∂bx
m − i

2 θ̄
KΓm∂bθ

K)

peculiar “degenerate” Lagrangian: no∂θ̄∂θ term

L ∼ ∂x∂x+ ∂xθ̄∂θ + (θ̄∂θ)2

perturbative expansion is well-defined

nearx̄ background, e.g.,xm = Nm
a σ

a

x = x̄+ ξ, θ′ =
√
∂x̄ θ

L ∼ ∂ξ∂ξ + θ̄′∂θ′ + 1√
∂x̄
∂ξθ̄′∂θ′ + ...

non-renormalizable by power counting

butκ-symmetry (uniqueness of action) implies finiteness



direct check of cancellation of 2-loop logarithmic UV divergences

and trivial partition function (Roiban, Tirziu, AT 07)

preservation ofκ-symmetry implies that semiclassical loop (α′)

expansion must be finite also in curved space

regularization issues are non-trivial starting with 2 loops



AdS5 × S5 = SO(2,4)
SO(1,4) ×

SO(6)
SO(5)

Killing vectors and Killing spinors ofAdS5 × S5 :

PSU(2, 2|4) symmetry

replaceG/H=SuperPoincare/Lorentz in flat GS case by

PSU(2, 2|4)

SO(1, 4) × SO(5)

generators:(Pq,Mpq); (P ′
r,M′

rs);QI
α, m = (q, r)

[P,P] ∼ M, [P,M] ∼ P, [M,M] ∼ M,

[Q,Pq] ∼ γqQ, [Q,Mpq] ∼ γpqQ
{QI ,QJ} ∼ δIJ(γ · P + γ′ · P ′) + ǫIJ(γ · M + γ′ · M′)



PSU(2, 2|4) invariant action:

∫
Tr(g−1dg)2G/H + WZ-term

J = g−1dg = JmPm + JIαQα
I + JmnMmn

I =

√
λ

2π

[ ∫
d2σ(JmJm + aJ̄IJI) + b

∫
Jm ∧ J̄IΓmJJsIJ

]

as in flat spacea = 0, b = ±1 required byκ-symmetry

unique action with right symmetry and right flat-space limit

Formal argument for UV finiteness (2d conformal invariance):

1. global symmetry – only overall coefficient

of J2 term (radius) can run

2. non-renormalization of WZ term (homogeneous 3-form)

3. preservation ofκ-symmetry at the quantum level

– relating coefficients ofJ2 and WZ terms



Equivalent form of the GS action:

AdS5 × S5 = SU(2,2)
Sp(2,2) × SU(4)

Sp(4)

generalized to
F̂
G = PSU(2,2|4)

Sp(2,2)×Sp(4)

basic superalgebrâf = psu(2, 2|4)

bosonic partf = su(2, 2) ⊕ su(4) ∼= so(2, 4) ⊕ so(6)

admitsZ4-grading:

(Berkovits, Bershadsky, Hauer, Zhukov, Zwiebach 89)

f̂ = f0 ⊕ f1 ⊕ f2 ⊕ f3 , [fi, fj ] ⊂ fi+jmod 4

f0 = g = sp(2, 2) ⊕ sp(4)

f2 = AdS5 × S5

currentJ = f−1∂af, f ∈ F̂ (notation change!)

Ja = f−1∂af = Aa +Q1a + Pa +Q2a

A ∈ f0, Q1 ∈ f1, P ∈ f2, Q2 ∈ f3 .



f̂ = psu(2, 2|4): quotient ofsu(2, 2|4) by aI

su(2, 2|4) as8 × 8 matrix algebra

M =

(
A X
X†Σ B

)
, TrA−TrB = 0, A ∈ u(2, 2) , B ∈ u(4) .

Σ =

(
I 0
0 −I

)
, K =

(
J 0
0 J

)
, J =

(
0 −1
1 0

)
, [Σ,K] = 0

Z4 split: M = M0 ⊕M1 ⊕M2 ⊕M3

M0,2 =

(
A0,2 = 1

2 (A±KAtK) 0
0 b0,2 = 1

2 (B ±KBtK)

)
,

M1,3 =

(
0 X1,3

X†
1,3Σ 0

)
, X1,3 = P

±
X =

1

2
(X ± iΣKX∗K).

M0 ∈ sp(2, 2)⊕sp(4),M2 in bosonic part of coset;M1 andM3 real
and imaginary parts ofX – “reality decomposition”:

elements from̂f1 and f̂3 satisfyX∗
1,3 = ∓iΣKX1,3K can be

solved in terms of4 × 4 real GrassmannX1,3

X1 = X1 + iΣKX1K , X3 = X3 − iΣKX3K .



GS Lagrangian:

LGS =
1

2
STr(

√−ggabPaPb + εabQ1aQ2b) ,

simple structure but not standard coset model:

fermionic currents in WZ term only

conformal gauge:
√−ggab = ηab

LGS = STr[P+P− +
1

2
(Q1+Q2− −Q1−Q2+)]

STr(P+P+) = 0 , STr(P−P−) = 0

Equations of motion in terms of currents ( 1-st order form)

EOM : ∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,

∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 .

MC : ∂−J+ − ∂+J− + [J−, J+] = 0 .

κ-gauge condition:Q1− = 0 , Q2+ = 0



remaining EOM:

∂+P− + [A+, P−] = 0 , ∂−P+ + [A−, P+] = 0

Maurer-Cartan:

∂+A− − ∂−A+ + [A+,A−] + [P+, P−] + [Q1+, Q2−] = 0 ,

∂−Q1+ + [A−, Q1+] − [P+, Q2−] = 0 ,

∂+Q2− + [A+, Q2−] − [P−, Q1+] = 0 .



How to solve quantum string theory inAdS5 × S5 ?

GS string on supercosetPSU(2,2|4)
SO(1,4)×SO(5)

not of known solvable type (cf. free oscillators; WZW)

analogy with exact solution ofO(n) model (Zamolodchikovs) or

principal chiral model (Polyakov-Wiegmann ...) ?

but 2d CFT – no mass generation

By analogy with flat space –

light-cone gauge: analog ofx+ = p+τ, p+ = const, Γ+θ = 0

Two natural options:

(i) null geodesic parallel to the boundary in Poincare patch–

action/Hamiltonian quartic in fermions (Metsaev, Thorn, AT, 01)

(ii) null geodesic wrappingS5:

complicated action (Callan et al, 03;

Arutyunov, Frolov, Plefka, Zamaklar, 05-06)



Common problem:

lack of manifest 2d Lorentz symmetry

hard to apply known 2d integrable field theory methods –

S-matrix depends on two rapidities, not on their difference

constraints on it are a priori unclear...

An alternative approach:“Pohlmeyer reduction”

conformal gauge, solve Virasoro conditions

find “reduced” action in terms of currents

use it as a starting point for quantization



Aim: PR version forAdS5 × S5 superstring

(i) introduce new fields locally related to supercoset currents

(ii) solve Virasoro condition explicitly

(iii) find local 2d Lorentz-invariant

action for independent (8B+8F) d.o.f

→ fermionic generalization of non-abelian Toda theory

PR: a nonlocal map that preserves integrable structure

1. gauge-equivalent Lax pairs; map between soliton solutions

gives integrable massive local field theory

2. quantum equivalence to original GS model ?

may expect for fullAdS5 × S5 string model =CFT

3. integrable theory: semiclassical solitonic spectrum

may essentially determine quantum spectrum

the two solitonic S-matrices should be closely related:

Lorentz-invariantS-matrix of PR-model should lead to

effective magnon S-matrix



Pohlmeyer reduction: bosonic coset models

Prototypical example:S2-sigma model→ Sine-Gordon theory

L = ∂+X
m∂−X

m − Λ(XmXm − 1) , m = 1, 2, 3

Equations of motion:

∂+∂−X
m + ΛXm = 0 , Λ = ∂+X

m∂−X
m , XmXm = 1

Stress tensor:T±± = ∂±Xm∂±Xm

T+− = 0 , ∂+T−− = 0 , ∂−T++ = 0

impliesT++ = f(σ+), T−− = h(σ−)

using the conformal transformationsσ± → F±(σ±) can set

∂+X
m∂+X

m = µ2 , ∂−X
m∂−X

m = µ2 , µ = const .

3 unit vectors in 3-dimensional Euclidean space:

Xm , Xm
+ = µ−1∂+X

m , Xm
− = µ−1∂−X

m ,



Xm is orthogonal (Xm∂±Xm = 0) to bothXm
+ andXm

−
remainingSO(3) invariant quantity is scalar product

∂+X
m∂−X

m = µ2 cos 2ϕ

then∂+∂−ϕ+ µ2

2 sin 2ϕ = 0

following from sine-Gordon action(Pohlmeyer, 1976)

L̃ = ∂+ϕ∂−ϕ+
µ2

2
cos 2ϕ

2d Lorentz invariant despite explicit constraints

Classical solutions and integrable structures

(Lax pair, Backlund transformations, etc) are directly related

e.g., SG soliton mapped into rotating folded string onS2

“giant magnon” in theJ = ∞ limit (Hofman, Maldacena 06)



Analogous construction forS3 model gives

Complex sine-Gordon model(Pohlmeyer; Lund, Regge 76)

L̃ = ∂+ϕ∂−ϕ+ cot2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ

ϕ, θ areSO(4)-invariants:

µ2 cos 2ϕ = ∂+X
m∂−X

m

µ3 sin2 ϕ ∂±θ = ∓1

2
ǫmnklX

m∂+X
n∂−X

k∂2
±X

l

“String onRt × Sn” interpretation

conformal gauge plust = µτ to fix conformal diffeomorphisms:

∂±Xm∂±Xm = µ2 areVirasoroconstraints

Similar construction forAdSn case,

i.e. string onAdSn × S1
ψ with ψ = µτ

e.g. reduced theory forAdS3 × S1

L̃ = ∂+φ∂−φ+ coth2 ϕ ∂+χ∂−χ− µ2

2
cosh 2φ



Comments:

• Virasoro constraints are solved by a special choice of variables
related nonlocally to the original coordinates

• Although the reduction is not explicitly Lorentz invariantthe
resulting Lagrangian turns out to be 2d Lorentz invariant

• The reduced theory is formulated in terms of manifestlySO(n)
invariant variables: “blind” to original global symmetry

• reduced theory is equivalent to the original theory as integrable
system: the respective Lax pairs are gauge-equivalent

• PR may be thought of as a formulation in terms of physical
d.o.f. – coset space analog of flat-space l.c. gauge (where 2d
Lorentz is unbroken)

• in Sn case reduced theory cannot be quantum-equivalent to
the original one (e.g., conformal symmetry was assumed in the
reduction procedure)



PR for bosonicF/G-coset model

G/H gauged WZW model + relevant integrable potential

F/G-coset sigma model:symmetric space

f = p ⊕ g , [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g

J = f−1df = A + P , A = Jg ∈ g , P = Jp ∈ p .

L = −Tr(P+P−)

G gauge transformationsf → fg;

globalF -symmetry:f → f0f , f0 = const ∈ F

classical conformal invariance

J = A + P as fundamental variables

D+P− = 0 , D−P+ = 0 , D = d+ [A, ] – EOM

D−P+ −D+P− + [P+, P−] + F+− = 0 – Maurer-Cartan

Tr(P+P+) = −µ2 , Tr(P−P−) = −µ2 – Virasoro



Main idea: – first solve EOM and Virasoro andthenMC

special choice ofG gauge condition and conformal diffs.→
find reduced action giving eqs. resulting from MC

gauge fixingthatsolves the first Virasoro constraint

P+ = µ T = const , T ∈ p = f ⊖ g, Tr(TT ) = −1

choice of special elementT → decomposition of the algebra ofF

f = p ⊕ g , p = T ⊕ n , g = m ⊕ h , [T, h] = 0 ,

h is a centraliser ofT in g



EOMD−P+ = 0 is solvedbyA− = (A−)h ≡ A−
second Virasoro constraint is solvedby

P− = µ g−1Tg , g ∈ G

EOM D+P− = 0 is solvedbyA+ = g−1∂+g + g−1A+g

To summarise:new dynamical field variables

G-valued fieldg , h-valued fields A+, A−, [T,A±] = 0



Relation toG/H gauged WZW model

remainingMaurer-Cartanequation ong,A± follows from

G/H gWZW action with potential:

L = − 1

2
Tr(g−1∂+gg

−1∂−g) + WZ term

− Tr
(
A+ ∂−gg

−1 −A− g
−1∂+g − g−1A+gA− +A+A−

)

− µ2Tr(Tg−1Tg)

Pohlmeyer-reduced theory forF/G coset sigma model

(Bakas, Park, Shin 95; Grigoriev, AT 07)

reduced theory for strings onRt × F/G or F/G× S1
ψ

integrablepotential: relation at the level of Lax pairs

special case of non-abelian Toda theory:

“symmetric space Sine-Gordon model”

(Hollowood, Miramontes et al 96)



A+, A−: integrate out or gauge-fix

Reduced equation of motion in the “on-shell” gaugeA± = 0:

Non-abelian Toda equations:

∂−(g−1∂+g) − µ2[T, g−1Tg] = 0 ,

(g−1∂+g)h = 0 , (∂−gg
−1)h = 0 .

F/G = SO(n+1)/SO(n) = Sn : G/H = SO(n)/SO(n− 1)

g =

(
k1 k2 . . . kn
. . . . . . . . . . . .

)
,

n∑

1=1

klkl = 1

get (in generalnon-Lagrangian) EOM for km

∂−(
∂+kℓ√

1 − ∑n
m=2 kmkm

) = −µ2kℓ , ℓ = 2, . . . , n .

Linearising around thevacuumg = 1 (i.e. k1 = 1, kℓ = 0)

∂+∂−kℓ + µ2kℓ +O(k2
ℓ ) = 0

massive spectrum: non-trivial S-matrix withH global symmetry



F/G = SO(n+ 1)/SO(n) = Sn:

parametrization ofg in Euler angles

g = eTn−2θn−2 ...eT1θ1e2TϕeT1θ1 ...eTn−2θn−2

and integrating outH = SO(n− 1) gauge fieldA±
leads to reduced theory that generalizes SG and CSG

L̃ = ∂+ϕ∂−ϕ+Gpq(ϕ, θ)∂+θ
p∂−θ

q +
µ2

2
cos 2ϕ

gWZW forG/H = SO(n)/SO(n− 1)

ds2n=2 = dϕ2 , ds2n=3 = dϕ2 + cot2 ϕ dθ2

G/H = SO(5)/SO(4):

ds2n=4 = dϕ2 + cot2 ϕ (dθ1 + cot θ1 tan θ2 dθ2)
2 + tan2 ϕ

dθ22
sin2 θ1

and similar forG/H = S5 = SO(6)/SO(5)



Bosonic strings onAdSn × Sn

straightforward generalization:

Lagrangian and the Virasoro constraints

L = Tr(PA+P
A
− ) − Tr(PS+P

S
−) ,

Tr(PS±P
S
±) − Tr(PA±P

A
± ) = 0

fix conformal symmetry by

Tr(PS±P
S
±) = Tr(PA±P

A
± ) = −µ2

then PR applies independently in each sector:

get direct sum of reduced systems forSn andAdSn
linked by Virasoro, i.e. commonµ

e.g. forF/G = AdS2 × S2:

L̃ = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ)



Reduced theory forAdS5 × S5 superstring

AdS5 × S5 = SU(2,2)
Sp(2,2) × SU(4)

Sp(4)

LGS = STr[P+P− +
1

2
(Q1+Q2− −Q1−Q2+)]

STr(P+P+) = 0 , STr(P−P−) = 0

PRprocedure: solve first EOM and Virasoro

κ-gauge condition:Q1− = 0 , Q2+ = 0

as in bosonicF/G case fix the“reduction gauge”

P+ = µ T ,

T =
i

2
diag(1, 1,−1,−1|1, 1,−1,−1) ,

P− = µ g−1Tg , A+ = g−1∂+g + g−1A+g , A− = A−

T definesH or h by [h, T ] = 0:

h = su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2)



new variables:

g =

(
ga 0
0 gs

)
, ga ∈ Sp(2, 2), gs ∈ Sp(4)

h = [su(2)]4-valued fieldA±
AdS5 andS5 sectors now coupled by fermions

Ψ
R
≡ 1√

µ
Q1+ , Ψ

L
≡ 1√

µ
gQ2−g

−1 .

fix residualκ-symmetry usingT :

Ψ
R,L

= Ψ
‖
R,L , Ψ‖

R,L
T = −TΨ‖

R,L

Fermions link bosons fromSp(2, 2) andSp(4)

transforming under both groups



parametrization ofΨ
R,L

in terms of 4 real Grassmann

2 × 2 matricesξ
R,L

andη
R,L

Ψ
R,L

=




0 0 0 α
R,L

0 0 β
R,L

0
0 −β†

R,L
0 0

α†
R,L

0 0 0




α
R,L

= ξ
R,L

+ iJξ
R,L

J , β
R,L

= η
R,L

− iJη
R,L

J

J =

(
0 −1
1 0

)



Reduced action forAdS5 × S5 superstring

(Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07)

classical gauge-fixed 1-st order equations in terms of currents

follow from an action!

fermionic generalization of “gWZW+ potential” theory for
G
H = Sp(2,2)

SU(2)×SU(2) ×
Sp(4)

SU(2)×SU(2)

L = L
gWZW

(g,A+, A−) + µ2 STr(g−1TgT )

+ STr (Ψ
L
TD+Ψ

L
+ Ψ

R
TD−Ψ

R
)

+ µSTr
(
g−1Ψ

L
gΨ

R

)

sum of PR theories forAdS5 andS5 “glued” by fermions

L = L̃AdS5
(ga, A±,a) + L̃S5(gs, A±,s)

+ ψ
L
D+ψL

+ ψ
R
D+ψR

+O(µ)

similar but not same as susy gWZW:



fermions are in “mixed” representation

standard2d kin. terms

LF = STr(Ψ
L
T∂+Ψ

L
+ Ψ

R
T∂−Ψ

R
) + ...

= −2i Tr(ξt
L
∂+ξL

+ ηt
L
∂+ηL

+ ξt
R
∂−ξR

+ ηt
R
∂−ηR

) + ...

integrable model: Lax pair encoding equations of motion

L− = ∂− +A− + ℓ−1√µg−1Ψ
L
g + ℓ−2µg−1Tg ,

L+ = ∂+ + g−1∂+g + g−1A+g + ℓ
√
µΨ

R
+ ℓ2µT



Comments:

• gWZW model coupled to the fermions interacting minimally
and through the “Yukawa term”

• 2d Lorentz invariant withΨ
R
,Ψ

L
as 2d Majorana spinors

• 8 real bosonic and 16 real fermionic independent variables

• 2d supersymmetry? yes, inAdS2 × S2 case:n = 2 super
sine-Gordon

• µ-dependent interactions are equal to GS Lagrangian; gWZW
produces MC eq.: path integral derivation via change from
fields to currents?

• quadratic in fermions (like susy version of gWZW); integrating
outA± gives quartic fermionic terms (reflecting curvature)

• linearisation of EOM in the gaugeA± = 0 aroundg = 1

describes 8+8 massive bosonic and fermionic d.o.f. with mass
µ: same as in BMN limit

• symmetry of resultingrelativisticS-matrix:H = [SU(2)]4 –
as bosonic part of magnon S-matrix symmetry[PSU(2|2)]2



Example: superstring onAdS2 × S2

T =
i

2




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 A± = 0

g =




cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 cos ϕ i sin ϕ

0 0 i sin ϕ cos ϕ


 ∈ SO(1, 1) × SO(2)

Ψ
R

=




0 0 0 iγ
0 0 −β 0
0 iβ 0 0
γ 0 0 0


 , Ψ

L
=




0 0 0 ρ
0 0 −iν 0
0 ν 0 0
iρ 0 0 0






PR Lagrangian: same asn = 2 supersymmetric sine-Gordon!

L̃ = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ)

+ β∂−β + γ∂−γ + ν∂+ν + ρ∂+ρ

− 2µ [coshφ cosϕ (βν + γρ) + sinhφ sinϕ (βρ− γν)] .

indeed, equivalent to

L̃ = ∂+Φ∂−Φ∗ − |W ′(Φ)|2

+ψ∗
L
∂+ψL

+ ψ∗
R
∂−ψR

+
[
W ′′(Φ)ψ

L
ψ

R
+W ∗′′(Φ∗)ψ∗

L
ψ∗

R

]
.

bosonic part is ofAdS2 × S2 bosonic reduced model if

W (Φ) = µ cos Φ , |W ′(Φ)|2 =
µ2

2
(cosh 2φ− cos 2ϕ) .

ψ
L

= ν + iρ , ψ
R

= −β + iγ ,



UV finiteness of the reduced theory

(R. Roiban, A.T., to appear)

Reduction procedure may work at the quantum level only

in conformally invariant case (as should be inAdS5 × S5 case)

Consistency requires that reduced theory is also UV finite

gWZW+ free fermions is finite,

µ-dependent terms may renormalize

fermions should cancel bosonic renormalization

indeed true inAdS2 × S2 case (n = 2 sine-Gordon)

true also in general:

STr(g−1TgT ) = Tr(g−1
a TgaT ) − Tr(g−1

s TgTs)

→ cos 2ϕ− cosh 2φ

cos 2ϕ is “relevant”,cosh 2φ - “irrelevant”

bosonic 1-loop correction∼ (cos 2ϕ+ cosh 2φ)

but fermions cancel this divergence



directly verified at 1-loop and 2-loop order

compute effective actionΓ[g]

after first “rotating away” gauge fieldA±:

IG/H [g,A] = IG[h−1gh′] − IH [h−1h′]

A+ = h−1∂+h, A+ = h′−1∂+h
′

possible divergences:

∼ Tr(g−1TgT ) at odd loops,∼ STr(g−1TgT ) at even loops

but cancel order by order between bosons and fermions

Thusµ is not renormalized, remains an arbitrary

conformal symmetry gauge fixing parameter at quantum level

In contrast to l.c. gauge fixed GS superstring

the reduced model is 2d Lorentz invariant

and power counting renormalizable (finite).

Classically integrable; prove integrability at the quantum level?



Open questions

• Quantum equivalence of reduced theory and GS theory?

Path integral argument of equivalence?

Potential terms is original action

Tr(P+P−) = µ2Tr(Tg−1Tg) and same for Yukawa

gWZW term from change of variables ?

Rough idea: string inRt × F/G

L = −(∂t)2 + Tr(f−1df +B)2 , f ∈ F, B ∈ g

string path integral in conformal andt = µτ gauge:
∫
DfDB δ(T++ − µ2) δ(T−− − µ2) eiI(f,B)



replacef−1df byC
∫
DCDBDv δ(T++ − µ2)δ(T−− − µ2)

×exp[i

∫
(C +B)2 + v(dC + C ∧ C)]

set (C + B)+ = µT , (C + B)− = µg−1Tg; change from
C,B, v to g ∈ G,A ∈ h: [h, T ] = 0

Transformation may work only in genuine quantum-conformal
(AdS5 × S5) case.

• Indication of equivalence: semiclassical expansion

near analog of(S, J) rigid string inAdS5 × S5 leads to same
characteristic frequencies

– same 1-loop partition function (Roiban, AT 08)

• Tree-level S-matrix for elementary excitations?

ManifestSU(2) × SU(2) × SU(2) × SU(2) symmetry?

Relation to magnon S-matrix in BA?



2d dualities ofAdS5 × S5 string
and dual superconformal symmetry

(Beisert, Ricci, AT, Wolf 08)

General remarks:

scalar 2d dualitydx→ ∗dx̃ or “T-duality”

(∂y)2 +G(y)(∂x)2 → (∂y)2 +G−1(y)(∂x̃)2

symmetry of 1-st order (phase-space) equations

but in general changes global symmetry of sigma model

i.e. of the metric “seen” by point particle

(dy2 + sin2 y dx2 → dy2 + sin−2 y dx̃2, SO(3) → SO(2))

thus changes set of conserved local Noether charges

yet is a symmetry of 2d equations –

conserved charges should not disappear

but may become non-local or hidden



Peculiarity ofAdSn metric in Poincare coordinates:

dy2 + e2ydxmdxm → dy2 + e−2ydx̃mdx̃m
mapped into same metric up toy → −y
Used to simplify form of GSAdS5 × S5 action (Kallosh, AT 98)

and to relate amplitudes to Wilson loops at strong coupling

(Alday, Maldacena 07)

SO(n−1, 2) sets of local Noether charges before and after duality

some local charges become non-local and some dual local charges

originate from hidden conserved charges of original model

(Ricci, AT, Wolf 07)

interplay of integrability and global symmetry –

no “doubling” of hidden charges:

Lax conections of original and dual model are equivalent

Relation to dual conformal symmetry at weak coupling

(Drummond, Henn, Korchemsky, Sokatchev 07)



Generalization toAdS5 × S5 superstring action:

to map superstring action after duality into itself and thus

get superconformalPSU(2, 2|4) symmetry in dual model

one needs to apply 2d duality also to some fermionic coordinates

(Berkovits, Maldacena 08)

The reason behind:

to get a symmetry of 1-st order superstring equations

one needs to transform both bosonic and fermionic currents –

get symmetry of Lax connection and thus of 1-st order system:

original and dual Lax pairs are related by

an automorphism ofpsu(2, 2|4)

[also symmetry of string action modulo choice of coset

representative,κ-symmetry gauge choice, analytic continuation]



Noether charges of original model in terms of the dual variables

give possibly non-local conserved charges in the dual model

Existence of additional set of conserved Noether charges

in dual model which are local in dual variables and thus

non-local in the original variables means they must originate

from some hidden conserved charges in original model

The existence of dual superconformal symmetry thus

closely related to integrability ofAdS5 × S5 superstring.

1-st order system may admit other symmetry transformations

but this “T-duality” is special in that it preserves maximal

possible global symmetry.

Its existence is rooted in structure of superconformal algebra:

possibility to choose translations ([Pa, Pb] = 0) andN = 4

Poincaŕe supersymmetries ({Qiα, Qjβ} = 0, [Q,P ] = 0)

as maximal abelian subalgebra inpsu(2, 2|4):

2d duality acts on associated 4 b and 8 f string coordinates



To relate it to dual superconformal symmetry of gauge theory

(of Drummond, Henn, Korchemsky, Sokatchev 08)

combine duality action on the “bulk” string coordinates

with action on the vertex operators inserted at the boundary



BosonicG/H Coset Model

G/H symmetric space coset model:g = g(0) + g(2) ≡ h + g(2)

L = 1
2 tr(j(2) ∧ ∗j(2)), j = g−1dg = j(0) + j(2) ≡ A+ j(2)

first-order system (∇ = d +A)

dA+A ∧A+ j(2) ∧ j(2) = 0, ∇j(2) = 0 ; ∇∗j(2) = 0

follows from flatness of Lax connection

j(z) = A+ aj(2) + b∗j(2), a, b = 1
2 (z2 ± z−2)

observe formal duality symmetry of this phase space system

and its integrable structure

j(2) 7→ i∗j(2), z 7→ e
π
4
iz

To relate coset fields, may define a non-local map

g 7→ g̃: (g−1dg)(2) = ∗(g̃−1dg̃)(2)



May also consider an analog of non-Abelian duality

in principal chiral model by adding MC eqs with Lagrange

multipliers and integrating over currents in path integral

In general, “dualities” are linear transformations of currents

that map 1st-order system into itself and respect integrability

The T-duality in the case ofAdSn orAdS5
∼= SO(2,4)

SO(1,4)

is special being “self-duality”:

maps the system into one with same global symmetry



AdS5 × S5 superstring

G/H = PSU(2, 2|4)/[SO(1, 4) × SO(5)]

Z4 grading ofpsu(2, 2|4) implies (notation change!)

j = g−1dg = j(0) + j(1) + j(2) + j(3), j(0) ≡ A

S =

∫
Str

[
j(2) ∧ ∗j(2) + j(1) ∧ j(3)

]
,

1-st order system:dj + j ∧ j = 0 + eqs. of motion

dA+A ∧A+ j(1) ∧ j(3) + j(2) ∧ j(2) + j(3) ∧ j(1) = 0,

∇j(1) + j(2) ∧ j(3) + j(3) ∧ j(2) = 0,

∇j(2) + j(1) ∧ j(1) + j(3) ∧ j(3) = 0,

∇j(3) + j(1) ∧ j(2) + j(2) ∧ j(1) = 0,

∇∗j(2) + j(3) ∧ j(3) − j(1) ∧ j(1) = 0,

[j(2),∧(j(1) + ∗j(1))] = 0,

[j(2),∧(j(3) − ∗j(3))] = 0.



Implied bydj(z) + j(z) ∧ j(z) = 0 for Lax family of flat currents

j(z) = A+z j(1) + 1
2 (z2 +z−2) j(2) +z−1 j(3) + 1

2 (z2−z−2) ∗j(2)

Explicit form depends on:

(i) bosonicH-gauge or choice of coset representative

(ii) fermionic κ-symmetry gauge

2d diffeomorphisms not fixed

Standard choice of the superconformal algebra basis

adapted to the Poincaré parametrization of AdS5
natural for comparison with boundary conformal theory inR1,3

psu(2, 2|4) =
{
Pa, Lab,Ka, D,Ri

j |Qiα, Q̄α̇i , Sαi , S̄iα̇
}

a, b = 0, . . . , 3, α, β = 1, 2, i, j = 1, . . . , 4



Z4-splitting ofpsu(2, 2|4) = h ⊕ g(1) ⊕ g(2) ⊕ g(3)

h =
{

1
2 (Pa −Ka), Lab, R(ij)

}
,

g(1) =
{

1
2 (Qiα + Siα), 1

2 (Q̄α̇i + S̄α̇i )
}
,

g(2) =
{

1
2 (Pa +Ka), D,R[ij]

}
,

g(3) =
{−i

2 (Qiα − Siα), i
2 (Q̄α̇i − S̄α̇i )

}
.

Choice of coset representative (H-gauge fixing)

adapted to Poincare form of metric

ds2 = − 1
2Y

2dXαβ̇dX
β̇α + 1

4Y 2 dYijdY
ij

(X,Y ) = (X α̇β , Y ij) are 4+6 bosonic coordinates

g(X,Y,Θ) = B(X,Y ) e−F (Θ),

B(X,Y ) = eiXP ei log(Y )D Λ(Y )

F (Θ) = i
[
(θiα+ Qiα + θiα− Siα) − (θ̄α̇+iQ̄

i
α̇ + θ̄α̇−iS̄

i
α̇)

]
,

Λ(Y ) = (Λij) = 1
Y (CikYkj).



Θ = (θiα± , θ̄
α̇
±i) are 32 fermionic coordinates,θiα± = (θ̄α̇±i)

†.

κ-gauge (“S-gauge”) that simplifies structure of string action

θiα− = θ̄α̇−i = 0, F (Θ) = i
[
θiα+ Qiα − θ̄α̇+iQ̄

i
α̇

]

Field redefinition:

(θiα+ , θ̄
α̇
+i) 7→ (θiα, θ̄α̇i ), θiα = Y −1/2(Λ−1)ijθ

jα
+

Then string action (after a rotation ofY )

S =

∫ {
− 1

2Y
2Παβ̇ ∧ ∗Πβ̇α + 1

4Y 2 dYij ∧ ∗dY ij

+ 1
2

(
ǫαβ dYij ∧ θiαdθjβ − ǫα̇β̇ dY ij ∧ θ̄α̇i dθ̄β̇j

)}

Πα̇β = dX α̇β + i
2 (θ̄α̇i dθiβ − dθ̄α̇i θ

iβ).

Bosonic 2d duality along 4X:
∫ [

− 1
2Y

2
(
Vα̇β + i

2 (θ̄α̇i dθiβ − dθ̄α̇i θ
iβ)

)2
+ X̃αβ̇dVβ̇α

+ 1
4Y 2 dYij ∧ ∗dY ij + 1

2

(
dYij ∧ θiαdθjα − dY ij ∧ θ̄α̇i dθ̄jα̇

)]



V - auxiliary one-form;X̃αβ̇ imposesdV = 0 → V = dX;

solving forV first (Kallosh, AT 98)

S̃ =

∫ {
− 1

2Y 2 dX̃αβ̇ ∧ ∗dX̃ β̇α
+ 1

4Y 2 dYij ∧ ∗dY ij

+ i
2dX̃βα̇ ∧ (θ̄α̇i dθiβ − dθ̄α̇i θ

iβ) + 1
2 (dYij ∧ θiαdθjα + c.c.)

}
.

(i) bosonic geometry is again AdS5 × S5 (up toY 7→ Y −1)

(ii) the dual action is quadratic in the fermions

on-shell relation between the original and dual coordinates is

dX α̇β + i
2 (θ̄α̇i dθiβ − dθ̄α̇i θ

iβ) = Y −2 ∗dX̃ α̇β .

Can use it in the Noether currents of original model

J
N

= g
[
j(2) − 1

2∗(j(1) − j(3))
]
g−1

to find their (non-local) expression in the dual model



Duality as symmetry of 1-st order system and Lax connection

How conserved charges of original and dual models are related?

duality applied to bosonicAdSn-model generically maps

conserved local charges into non-local ones and vice versa

(Ricci, AT, Wolf 07)

first ignore fermions: back to bosonicAdS5 = SO(2, 4)/SO(1, 4)

considerZ2-automorphism of conformalso(2, 4) algebra

Ω
(
P

)
= −K, Ω

(
K

)
= −P, Ω (D) = −D, Ω (L) = L

For choice ofAdS5 coset representativeg = eiXPY iD

j = g−1dg = jP + jD, jP = iY dX α̇βPβα̇, jD = i
Y dY D

Then 1-st order system is

djP + jD ∧ jP + jP ∧ jD = 0, djD = 0,

d∗jP − jD ∧ ∗jP − ∗jP ∧ jD = 0,

d∗jD − 1
2jP ∧ ∗Ω (jP ) − 1

2∗Ω (jP ) ∧ jP = 0.



under T-duality:(X α̇β , Y ) → (X̃ α̇β , Ỹ )

dX̃ α̇β = Y 2∗dX α̇β , Ỹ = Y −1.

jP = iY dX α̇βPβα̇ = iỸ ∗dX̃ α̇βPβα̇ = ∗j̃P ,
jD = i

Y dY D = − i

Ỹ
dỸ D = −j̃D

this transformation, i.e.

jP 7→ j̃P = ∗jP and jD 7→ j̃D = −jD (∗)

is symmetry of first-order equations

(MC equation forjP is interchanged with its eq. of motion)

Thus can view it as a symmetry of phase space equations

regardless particular parametrization

Family of flat currents

j(z) = 1
4 (z + z−1)2jP − 1

4 (z − z−1)2Ω(jP )

− 1
4 (z2 − z−2)∗

(
jP − Ω(jP )

)
+ 1

2 (z2 + z−2)jD

− 1
2 (z2 − z−2)∗jD



j(z) in the T-dual model should be the same

with (X α̇β , Y ) 7→ (X̃ α̇β , Ỹ = Y −1)

(*) gives apparently different result

j̃(z) = 1
4 (z + z−1)2∗jP − 1

4 (z − z−1)2∗Ω(jP )

− 1
4 (z2 − z−2) (jP − Ω(jP )) − 1

2 (z2 + z−2)jD

+ 1
2 (z2 − z−2)∗jD

But no doubling – two Lax connections are equivalent:

related by aZ2-automorphism ofso(2, 4):

Uz(T ) = UzΩ(T )U−1
z , Uz = [f(z)]iD, f =

z − z−1

z + z−1

Uz(jP ) = f(z)Ω(jP ), Uz(Ω(jP )) = (f(z))−1jP , Uz(jD) = −jD,
it maps the two Lax connections into each other

Uz(j(z)) = j̃(z)



Thus T-duality can be abstractly understood as

symmetry of the Lax connection (integrable structure)

induced by the automorphism of the conformal algebraso(2, 4)

This symmetry then implies a certain map of conserved charges

Analogous automorphism once fermions are included?

κ-symmetry gauge choice makes some of

super-isometries non-manifest; transformed action not the same

add transformations of components of fermionic current

that will lead to symmetry of the full 1-st order GS system

Duality is an equivalence at the full2d field theory level:

original global symmetry and its conserved charges

should not actually disappear but may become non-local

or hidden (not visible in the point-particle limit of the action)

to recover the original global symmetry



Bosonic+Fermionic duality: self-duality of superstring action

Combine bosonic duality with a similar fermionic one:

applying 2d duality toθiα (but not to their conjugates̄θα̇i ).

Get action that can be interpreted as originalAdS5 × S5

superstring written in a differentκ-symmetry gauge.

Thus combination of bosonic + fermionic dualities maps

superstring action into an equivalent action.

Find full global superconformal group now acting

(modulo a compensatingκ-symmetry transformation)

on coordinates of the dual action.

1-st order form of Lagrangian after bosonic duality:

− 1
2Y 2 dX̃αβ̇ ∧ ∗dX̃ β̇α

+ 1
4Y 2 dYij ∧ ∗dY ij − iX̃βα̇dθ̄α̇i ∧ Viβ

− 1
2YijV

iα ∧ Vjα − θ̃iα ∧ dViα + 1
2Y

ijdθ̄α̇i ∧ dθ̄jα̇



constraintdViα = 0 added with Lagrange multiplier̃θiα

Viα = − 1
Y 2Y

ijǫαβ(dθ̃jβ − iX̃βα̇dθ̄α̇j ) = dθiα

cf. bosonic duality: no Hodge star – fermions appear in WZ term

solve forV: dual action for̃θ

− 1
2Y 2 dX̃αβ̇ ∧ ∗dX̃ β̇α

+ 1
4Y 2 dYij ∧ ∗dY ij + 1

2Y
ijdθ̄α̇i ∧ dθ̄jα̇

− 1
2Y 2Y

ijǫαβ(dθ̃′iα + idX̃αγ̇ θ̄
γ̇
i ) ∧ (dθ̃′jβ + idX̃βδ̇ θ̄

δ̇
j )

whereθ̃′iα = θ̃iα − iX̃αβ̇ θ̄
β̇
i



Key point: this action is equivalent via field redefinition

to originalAdS5 × S5 GS action

in a different (complex)κ-gauge (̄QS-gauge)

(Roiban, Siegel ’00)

θiα− = 0, θ̄α̇+i = 0

i.e. with coset representativeg = B(X,Y ) e−F (Θ)

F (Θ) = i
(
θiα+ Qiα + θ̄α̇−iS̄

i
α̇

)
,

thus combination of bosonic and fermionic dualities relates

AdS5 × S5 action in theκ-symmetry S-gauge

to same action in theκ-symmetryQ̄S-gauge

implies existence of superconformal symmetry after the dualities

now explain the need for fermionic duality from

more general point of view: bosonic+fermionic dualities

leave superstring 1-st order system and Lax connection invariant



Bosonic+fermionic duality as symmetry of Lax connection

bosonic AdS5 case: T-duality a symmetry of 1st-order system

combined with a particular automorphism of conformal algebra

Now extend that symmetry to full superstring

by relating it to an automorphism of superconformal algebra.

Z4 automorphism ofpsu(2, 2|4)

Ω(Pαβ̇) = −Kαβ̇ , Ω(Kαβ̇) = −Pαβ̇ , Ω(D) = −D,
Ω(R[ij]) = −R[ij], Ω(R(ij)) = R(ij), Ω(Qiα) = iSiα,

Ω(Q̄α̇i ) = iS̄α̇i , Ω(Sαi ) = −iQαi , Ω(S̄iα̇) = −iQ̄iα̇

combined duality relation

dX β̇α + i
2 (θ̄β̇i dθiα − dθ̄β̇i θ

iα) = Y −2 ∗dX̃ β̇α,

dθiα = − 1
Y 2Y

ijǫαβ(dθ̃jβ − iX̃βα̇dθ̄α̇j ), Ỹ = Y −1

relate current in S-gaugej = jP + jD + jR + jQ + jQ̄



to dual one in thēQS-gaugẽj = j̃P + j̃D + j̃R + j̃Q + j̃S̄

j̃P = ∗jP , j̃D = −jD, j̃Ra
= −jRa

, j̃Rs
= jRs

,

j̃Q = jQ, j̃S̄ = −iΩ(jQ̄).

Flat currents: in the S-gauge

j(z) = jB(z)+ 1
2 (z+z−1)(jQ+jQ̄)− i

2 (z−z−1)(Ω(jQ)+Ω(jQ̄)),

the dual one in̄QS-gauge

j̃(z) = j̃B(z)+ 1
2 (z+z−1)(jQ−iΩ(jQ̄))+ i

2 (z−z−1)(Ω(jQ)+ijQ̄),

are related by aZ4 automorphism of the superconformal algebra:

Uz(T ) = Uz Ω(T )U−1
z , Uz = e−πB(f(z))i(B+D)

f(z) = z−z−1

z+z−1 and[B, Q] = i
2Q, [B, S] = − i

2S, etc.



Explicitly

Uz(P ) = f(z)Ω(P ), Uz(K) = f−1(z)Ω(K), Uz(D) = Ω(D), no

Uz(Qiα) = if(z)Ω(Qiα), Uz(Sαi ) = −if(z)−1Ω(Sαi ),

Uz(Q̄α̇i ) = −iΩ(Q̄α̇i ), Uz(S̄iα̇) = iΩ(S̄iα̇).

then Lax connections are related as

j̃(z) = Uz(j(z))

i.e. duality is symmetry of integrable structure

and 1-st order system

conserved charges are not doubled but reshuffled

Noether charges may be derived from flat currentj(z) atz = ±1:

superconformal Noether charges (f → 0, z → ±1) behave as



• Pαβ̇-charge becomes trivial
• Lαβ- andLα̇β̇-charges go into themselves and thus local
• Kαβ̇-charge gets lifted and becomes non-local
• D-charge goes into itself and thus remains local
• Ri

j-charge goes into itself and thus remains local
• Qiα-charge becomes trivial
• Q̄α̇i -charge goes into thēSiα̇-charge and thus remains local
• Sαi -charge gets lifted and becomes non-local
• S̄iα̇-charge goes into thēQα̇i -charge and thus remains local

Pαβ̇ andQiα do not act on dual fields̃Xαβ̇ andθ̃iα

resulting picture in agreement with

parallel work of Berkovits and Maldacena 08

similar relations for the generators of the original and dual

superconformal symmetry when acting on supergluon amplitudes

(Drummond, Henn, Korchemsky, Sokatchev 08)


